STRUCTURAL CALCULATIONS

DATE: February 20, 2020

PROJECT: 18–220 T–BRACKET (TBWS)

BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E. (OR and WA) RON DERRICK, P.E., (CA)

FOR: WOODSTONE STRUCTURES, LLC

PROJECT DESCRIPTION & SCOPE OF SERVICES:

Structural design in accordance with the 2012 International Building Code (IBC) for the above referenced project as follows:

Wood-Bolted Connection Analysis

Steel Assembly Analysis

Should conditions differ from those depicted in this report or accompanying drawings, contact this office for further direction. The analyses contained herein apply only to the steel T-Bracket and typical fastener connection between steel side-plates and a wood main member. Branch Engineering, Inc. has not reviewed any framing for any structure considered to be supported by the above referenced product and/or the connected roof system.

SPECIAL INSPECTION:

None

NOTES:

Analysis based upon measurements taken from drawing of bracket assembly, supplied by Woodstone Structures, LLC, October 2019.

No analysis of supporting structure or supporting framing has been conducted in conjunction with this report. Consult a local Engineer for each individual installation scenario.

See additional notes below "TBWS Allowable Loads" table.

EUGENE-SPRINGFIELD ALBANY

STRUCTURAL ENGINEERING REPORT

DATE:February 24, 2020PROJECT:18-220 PATIO ROOF RISERCLIENT:WOODSTONE STRUCTURES, LLCREPORT BY:BRANCH ENGINEERING, INC.

T-BRACKET (TBWS)

DESCRIPTION:

This structural engineering report has been requested by Woodstone Structures, LLC for analysis of a proprietary product called, "T-BRACKET." The objective of this analysis is to report the allowable capacity of the product for use in supporting vertical loading in the uplift direction.

ASSUMED MATERIAL:

STEEL PLATE – 1/4" ASTM A36

(6) 1/2" DIA. ASTM A307 BOLT

OR (6) 1/2" DIA. ASTM A307 LAG SCREWS OPTIONS:

- 1. Bracket may be installed in pairs or single-sided with a reduced allowable capacity.
- 2. Brackets may be installed using $\frac{1}{2}$ " diameter lag screws.

TBWS ALLOWABLE LOADS – THRU–BOLT

MODEL & ANCHORAGE	COLUMN SIZE (NOM.)	FASTE	ENERS	DF/SP UPLIFT (160)
		QTY.	DIA.	(lb)
TBWS PAIR	4x6 OR 6x6	6	1/2"	3296
TBWS SINGLE-SIDED	4x6 OR 6x6	6	1/2"	1632

TBWS ALLOWABLE LOADS - LAG SCREW

MODEL & ANCHORAGE	MIN. FASTENER PENETRATION	FASTE	NERS	DF/SP UPLIFT (160)
	(in)	QTY.	DIA.	(lb)
TBWS PAIR	4	12	1/2"	2048
TBWS SINGLE-SIDED	4	6	1/2"	1024

NOTES:

- 2. FOR TBWS INSTALLED ONLY ON ONE-SIDE, USE SINGLE-SIDED ALLOWABLE LOAD VALUES. UPLIFT LOADS SHALL BE APPLIED ONLY TO THE SIDE OF THE ATTACHED MEMBERS HAVING THE TBWS, IN ORDER TO ACHIEVE THE STATED ALLOWABLE LOAD.
- 3. ALLOWABLE LOADS SHOWN ARE FOR A SINGLE TBWS OR (2) TBWS BRACKETS INSTALLED UTILIZING A DOUBLE SHEAR CONFIGURATION.
- 4. ANALYSIS AND ALLOWABLE LOADS ARE FOR THE STEEL BRACKET AND BOLTS INSTALLED THROUGH WOOD MAIN MEMBER WITH STEEL SIDE-PLATES.
- 5. CONSULT WITH A LOCAL ENGINEER FOR EACH INDIVIDUAL INSTALLATION.
- 6. NO DESIGN OF SUPPORTING OR SUPPORTED FRAMING HAS BEEN CONDUCTED. CONSULT AN INDEPENDENT ENGINEER FOR DESIGN OF SUCH FRAMING.
- UPLIFT LOADS HAVE BEEN INCREASED FOR WIND OR SEISMIC LOADING, WITH NO FURTHER INCREASE ALLOWED.
 ALLOWABLE LOADS ARE FOR VERTICAL LOADS ONLY. LATERAL BRACING MUST BE SUPPLIED BY OTHER LATERAL FORCE RESISTING SYSTEMS DESIGNED BY OTHERS. LATERAL BRACING SYSTEMS MUST BE INDEPENDENT FROM THE TBWS SUPPORT BRACKET & POSTS.
- FASTENERS SHALL BE INSTALLED AT THE CENTERLINE (OR ABOVE AT BEAM) OF EACH ATTACHED MEMBER.
- 10. NOT VALID FOR UPLIFT LOADS WHEN THE BEAM FASTENERS ARE INSTALLED CLOSER TO THE BOTTOM FACE OF BEAM THAN THE TOP FACE OF BEAM.
- 11. ALLOWABLE LOADS ASSUME A CONTINUOUS BEAM.
- 12. EDGE DISTANCE SHALL BE GREATER THAN OR EQUAL TO 2" (4D) FOR BEAM & 3/4" (1.5D) FOR POST.
- 13. MULTIPLY ALLOWABLE LOADS BY 0.5 WHERE POST END DISTANCE IS LESS THAN 3 1/2". POST END DISTANCE SHALL NOT BE LESS THAN 1 3/4" MIN.
- 14. ALLOWABLE LOADS SHOWN ARE FOR DRY-SERVICE CONDITIONS ONLY (MOISTURE CONTENT <19%). FOR WET-SERVICE CONDITIONS, MULTIPLY BY 0.7.
- 15. BOLT HOLES SHALL BE A MINIMUM OF 1/32" AND A MAXIMUM OF 1/16" LARGER THAN THE BOLT DIAMETER (PER 2012 NDS SEC. 11.1.3.2)
- 16. COMPONENTS MAY EXPERIENCE YIELDING AT THE ABOVE STATED UPLIFT CAPACITY. SUBSEQUENT REPLACEMENT MAY BE REQUIRED.
- 17. WHERE INSTALLATION IS COMPLETED USING LAG SCREWS, THE LENGTH OF THE LAG SCREW SHOULD BE SUCH THAT THE MINIMUM PENETRATION OF THE LAG SCREW INTO THE MAIN MEMBER IS GREATER THAN OR EQUAL TO 8X THE SCREW DIAMETER (8D). FOR PENETRATION IN MAIN MEMBER LESS THAN 8D, MULTIPLY THE ALLOWABLE LOADS BY THE RATIO OF ACTUAL PENETRATION TO MINIMUM PENETRATION (p/8D). IN NO CASE SHALL THE PENETRATION BE LESS THAN 4D.
- 18. WHERE INSTALLATION OF TBWS PAIR UTILIZES LAG SCREW OPTION, MAIN MEMBER AND/OR LAG SCREW LENGTH SHALL BE SUCH THAT LAG SCREWS INSTALLED FROM OPPPOSING DIRECTIONS DO NOT CONTACT EACH OTHER.
- 19. LOAD ASSUMED TO BE UNIFORMLY DISTRIBUTED OVER THE LENGTH OF ATTACHED BEAM.

EUGENE-SPRINGFIELD ALBANY

TYPICAL TBWS INSTALLATION

310 5th Street, Springfield, OR 97477 | p: 541.746.0637 | www.branchengineering.com

^{1.} NOTES APPLY TO INSTALLATIONS WITH THRU-BOLTS OR LAG SCREWS.

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5 F)	Density[lb/ft^3]	Yield[ksi]
1	A36 Gr.36	29000	11154	.3	.65	490	36

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	l (90,270) [in4]	l (0,180) [in4]
1	HR1A	PL1/4x2.25	Beam	None	A36 Gr.36	Typical	.563	.003	.237

Member Primary Data

	Label	I Joint	J Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N5	N10		HR1A	Beam	None	A36 Gr.36	Typical
2	M2	N1	N4		HR1A	Beam	None	A36 Gr.36	Typical
3	M3	N11	N12		WOOD1A	Beam	None	#2 DF	Typical
4	M4	N6	N15		HR1A	Beam	None	A36 Gr.36	Typical
5	M5	N7 NC) ANALY	SIS - LOA	D DISTRIB	UTION (ONLY, TYP.	A36 Gr.36	Typical
6	M6	N8	N17		HR1A	Beam	None	A36 Gr.36	Typical
7	M7	N9	N18		HR1A	Beam	None	A36 Gr.36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rati	TOM	Inactive
1	M1						Yes			
2	M2						Yes			
3	M3						Yes			Exclude
4	M4	PIN	PIN				Yes			Exclude
5	M5	PIN	PIN				Yes			Exclude
6	M6	PIN	PIN				Yes			Exclude
7	M7	PIN	PIN				Yes			Exclude

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lb-out[in]	Lb-in[in]	Lcomp top[in]	[Lcomp bot[in]	L-torqu.	. K-out	K-in	Cb	Function
1	M1	HR1A	14.75		-	Lb out						Lateral
2	M2	HR1A	11.875			Lb out						Lateral
3	M4	HR1A	1			Lb out						Lateral
4	M5	HR1A	1			Lb out						Lateral
5	M6	HR1A	1			Lb out						Lateral
6	M7	HR1A	1			Lb out						Lateral

Member Distributed Loads (BLC 1 : UPLIFT)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/f	Start Locat	. End Location[in,%]
1	M3	Y	8500	8500	0	0

Load Combinations

	Description	Sol.	PD.	.SR	BLC	Fact	BLC	Fact.	BLC	Fact.	BLC	Fact.	BLC	Fact	BLC	Fact	BLC	Fact.	BLC	Fact.	BLC	Fact	BLC	Fact
1	LRĖD																							
2	UPLIFT	Yes	Y		1	1																		

5/9

Member AISC 14th(360-10): LRFD Steel Code Checks

1

	LC	Member	Shape	UC Max	Loc[in]	Shear UC	Loc[in]	phi*Pnc[lb]	phi*Pnt[lb]	phi*Mn[lb-ft]	Cb	Egn
1	2	M1	PL1/4x2.25	1.000	7.375	.716	7.375	3115.136	18241.2	853.2	1.638	H1-1b
2	2	M2	PL1/4x2.25	.573	1.237	.000	0	4806.112	18241.2	781.867	1	H1-1a

<=1.0 OK!

Since 1977 310 5th Street

DATE: 2/20/2020

PROJECT: 18-220 WOODSTONE STRUCTURES **BY: JOSHUA ANNETT** CHECKED BY: RICK HERNANDEZ, P.E., S.E.

civil • transportation structural • geotencial Civil • transportation Springfield, Oregon 97477 Telephone: (541) 746 0637

SURVEYING		SHEET: P	Lvert		
	Bolted Shear Connection Desi	gn for Bolts in	Standard Holes		
Steel thickness:	0.25 in	F _y :	36 ksi		
Steel width:	2.25 in	F _u :	58 ksi		
Steel specification:	A36	φF _{nv} :	20.25 ksi		
Bolt diameter, d:	0.5 in	A _{gv} :	0.56 in ²	Shear Yielding	
Bolt specification:	A307	A _g :	0.56 in ²	Tensile Yielding	
Thread condition:	Ν	A _{nv} :	0.98 in ²	Shear Rupture	
Bolt Hole Preparation Method:	Punch	A _e :	0.41 in ²	Tensile Rupture	
Threaded Part F _u :	60 ksi	A _{nv} :	0.98 in ²	Block Shear	
Bolt spacing, s:	3.75 in	A _{qv} :	1.22 in ²	Block Shear	
Edge distance, L _{ev} :	1.125 in	A _{nt} :	0.13 in ²	Block Shear	
Side distance, L _{eh} :	1.125 in	U _{bs} :	1	Block Shear	
Number of bolts in row:	2	U:	1	Shear Lag Factor	
Number of rows:	1				
	Shear Yielding: $\phi R_n =$	12.15 kip			
	Tensile Yielding: $\phi R_n =$	18.23 kip			
	Shear Rupture: $\phi R_n =$	25.69 kip			
	Tensile Rupture: $\phi R_n =$	17.67 kip			
	Block Shear Rupture: $\phi R_n =$	25.18 kip			
	Bolt Shear Strength: $\phi R_n =$	7.95 kip			
	Bearing Strength at Bolt Hole: $\phi R_n =$	21.21 kip			

Connection Design Strength:

7.95 kips

Since 1977 310 5th Street

DATE: 2/20/2020

civil • transportation structural • geotechnical Civil • transportation Springfield, Oregon 97477 Telephone: (541) 746 0637

PROJECT: 18-220 WOODSTONE STRUCTURES **BY: JOSHUA ANNETT** CHECKED BY: RICK HERNANDEZ, P.E., S.E.

SURVETING			SHEET: PLho	oriz		
		Bolted Shear Connection Desi	gn for Bolts in St	andard Holes		
Steel thickness:	0.25 in		F _y :	36 ksi		
Steel width:	14.75 in		Fu:	58 ksi		
Steel specification:	A36		φF _{nv} :	20.25 ksi		
Bolt diameter, d:	0.5 in		A _{gv} :	1.13 in ²	Shear Yielding	
Bolt specification:	A307		A _g :	3.69 in ²	Tensile Yielding	
Thread condition:	Ν		A _{nv} :	0.84 in ²	Shear Rupture	
Bolt Hole Preparation Method:	Drill		A _e :	3.13 in ²	Tensile Rupture	
Threaded Part F _u :	60 ksi		A _{nv} :	0.21 in ²	Block Shear	
Bolt spacing, s:	3.75 in		A _{gv} :	0.28 in ²	Block Shear	
Edge distance, L _{ev} :	1.125 in		A _{nt} :	2.84 in ²	Block Shear	
Side distance, L _{eh} :	1.125 in		U _{bs} :	0.5	Block Shear	
Number of bolts in row:	1		U:	1	Shear Lag Factor	
Number of rows:	4					
Spacing between rows:	4.1667 in	Shear Yielding: φR _n =	24.30 kip			
		Tensile Yielding: $\phi R_n =$	119.48 kip			
		Shear Rupture: $\phi R_n =$	22.02 kip			
		Tensile Rupture: $\phi R_n =$	135.94 kip			
		Block Shear Rupture: $\phi R_n =$	66.41 kip			
		Bolt Shear Strength: $\phi R_n =$	15.90 kip			
	Bear	ing Strength at Bolt Hole: $\phi R_n =$	44.04 kip			
		Connection Design Strength:	15.90 kips	i		

 Since 1977
 310 5th Street

 Since 1977
 310 5th Street

 Structural • geotechnical
 Springfield, Oregon 97477

 SURVEYING
 Telephone: (541) 746 0637

DATE: 2/20/2020

PROJECT: 18-220 WOODSTONE STRUCTURES BY: JOSHUA ANNETT

CHECKED BY: RICK HERNANDEZ, P.E., S.E. SHEET: Fasteners (T)

FASTENER LATERAL DESIGN VALUES

							ALLOWABLE LA VAL	TERAL DESIGN						
					MIN MAIN				MIN.					
					MEMBER FOR	PARALLEL TO			PENETRATION					TOTAL
			SINGLE/	STEEL SIDE	FASTENER	GRAIN LOAD			LENGTH INTO			LOAD		ADJUSTED
	FASTENER		DOUBLE	MEMBER	LATERAL	REDUCTION	PARALLEL TO	PERP. TO	MAIN		GEOMETRY	DURATION	WET SERVICE	ALLOWABLE
QTY	DIAMETER	TYPE	SHEAR	THICKNESS	DESIGN VALUE	FACTOR	GRAIN	GRAIN	MEMBER, p	p/8D	FACTOR, C∆	FACTOR, CD	FACTOR, CM	SHEAR, Z'
2	0.5	BOLT	SINGLE	0.25	3.5	0.874	830	510	THRU	1	1	1.6	1	1632
2	0.5	BOLT	DOUBLE	0.25	3.5	0.874	1650	1030	THRU	1	1	1.6	1	3296
2	0.5	LAG	SINGLE	0.25	3.5	0.874	520	320	4	1	1	1.6	1	1024
2	0.5	LAG	DOUBLE	0.25	3.5	0.874	1040	640	4	1	1	1.6	1	2048

 Civil · transportation
 Since 1977
 310 5th Street

 Structural · geotechnical
 SURVEYING
 Stringfield, Oregon 97477

DATE: 2/20/2020

PROJECT: 18-220 WOODSTONE STRUCTURES BY: JOSHUA ANNETT CHECKED BY: RICK HERNANDEZ, P.E., S.E. SHEET: Capacity Summary (TBWS)

FASTENER LATERAL DESIGN VALUES									
	LAG SCREWS		THRU	BOLTS					
	ALLOWABLE WIND UPLIFT LOAD w/ (1)	ALLOWABLE WIND UPLIFT LOAD w/ TBWS	ALLOWABLE WIND UPLIFT LOAD w/ (1)	ALLOWABLE WIND UPLIFT LOAD w/					
COMPONENT	TBWS	PAIR	TBWS	TBWS PAIR					
THRU-BOLTS IN WOOD COLUMN	1024	2048	1632	3296	CONTROLS DESIGN				
STEEL ASSEMBLY	6269	12538	6269	12538					
BOLT HOLES IN STEEL AT BEAM	9543	19085	9543	19085					
BOLT HOLES IN STEEL AT COLUMN	4771	9543	4771	9543					